skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DiMario, M T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Physical realizations of the canonical phase measurement for the optical phase are unknown. Single-shot phase estimation, which aims to determine the phase of an optical field in a single shot, is critical in quantum information processing and metrology. Here we present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements that maximize information gain as the measurement progresses, which have higher sensitivities over the best known adaptive Gaussian strategies. To gain understanding about their fundamental characteristics and demonstrate their superior performance, we develop a comprehensive statistical analysis based on Bayesian optimal design of experiments, which provides a natural description of these non-Gaussian strategies. This mathematical framework, together with numerical analysis and Monte Carlo methods, allows us to determine the asymptotic limits in sensitivity of strategies based on photon counting designed to maximize information gain, which up to now had been a challenging problem. Moreover, we show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the asymptotic limit differing only by a scaling factor, thus providing the highest sensitivity among physically-realizable measurements for single-shot phase estimation of coherent states known to date. This work shines light into the potential of optimized non-Gaussian measurements based on photon counting for optical quantum metrology and phase estimation. 
    more » « less
  2. Abstract Quantum state discrimination is a central problem in quantum measurement theory, with applications spanning from quantum communication to computation. Typical measurement paradigms for state discrimination involve a minimum probability of error or unambiguous discrimination with a minimum probability of inconclusive results. Alternatively, an optimal inconclusive measurement, a non-projective measurement, achieves minimal error for a given inconclusive probability. This more general measurement encompasses the standard measurement paradigms for state discrimination and provides a much more powerful tool for quantum information and communication. Here, we experimentally demonstrate the optimal inconclusive measurement for the discrimination of binary coherent states using linear optics and single-photon detection. Our demonstration uses coherent displacement operations based on interference, single-photon detection, and fast feedback to prepare the optimal feedback policy for the optimal non-projective quantum measurement with high fidelity. This generalized measurement allows us to transition among standard measurement paradigms in an optimal way from minimum error to unambiguous measurements for binary coherent states. As a particular case, we use this general measurement to implement the optimal minimum error measurement for phase-coherent states, which is the optimal modulation for communications under the average power constraint. Moreover, we propose a hybrid measurement that leverages the binary optimal inconclusive measurement in conjunction with sequential, unambiguous state elimination to realize higher dimensional inconclusive measurements of coherent states. 
    more » « less
  3. null (Ed.)
    Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum metrology. Optical phase estimation is at the center of many metrological tasks where the value of a physical parameter is mapped to the phase of an electromagnetic field and single-shot measurements of this phase are necessary. While there are measurements able to estimate the phase of light in a single shot with small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are based on real-time optimization of coherent displacement operations, single photon counting with photon number resolution, and fast feedback. We show that our demonstration of these optimized estimation strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states. 
    more » « less
  4. Abstract The achievable rate of information transfer in optical communications is determined by the physical properties of the communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication strategies for communication over phase noise channels to enhance information transfer beyond what is possible with conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength, these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information. 
    more » « less